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Basic biostatistical methods 
 
 
All data are hypothetical and were generated for the purposes of demonstration and 
examples only. 
 

Analysis of continuous (normally distributed) data 
 
Independent (two) samples t-test 

 
A very common way to assess a difference between two groups is to use a t-test. 
These are called independent or two samples t-tests.  
 
The objective of the two sample t-test is to infer if there is a significant difference 
between two population means based on samples derived from the populations - 
testing for the difference between two means 
 
Test statistic 

𝑡 =  
�̅�1 − �̅�2

𝑆𝐸�̅�1−�̅�2

 

 
P-values are obtained by comparing the test statistic to critical values of the Student’s 
t-distribution or is calculated more precisely using statistical software.  
 
Perhaps more importantly, confidence intervals can be calculated for mean differences 
providing a range of plausible values of the true mean difference. 
 

(�̅�1 − �̅�2) ± 𝑡𝛼,𝑑𝑓 × 𝑆𝐸�̅�1−�̅�2
 

 
Worked example in R – testing for a difference in systolic blood pressure 
between those with and without diabetes 
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The estimated mean difference is -15.3 (mmHg), with a 95% confidence interval (CI) 
of -23.12 to -7.49. The interpretation of the 95% CI is that, in a long series of identical 
repeat experiments, the 95% CI will contain the true population difference on 95% of 
occasions (the true population difference is either in the interval or not). In this 
example, the mean difference is statistically significant as denoted by the 95% CI, 
which does not include the null value of 0, and the p-value which is less than 0.05. 
 
Assumptions 
 

 The samples are independent → the selection of observations in one sample 
does not influence the selection of observations in the other sample 

 

 The populations from which the two samples were derived follow normal 
distributions → this in turn means that �̅�1 − �̅�2 follows a normal distribution and 
the properties of the normal distribution can be applied for statistical hypothesis 
testing – assess normality using histograms, P-P plots or Q-Q plots 

 

 Ideally, the populations should have equal variances → known as homogeneity 
of variances 

 
What to do in the case of un-equal variances? 
 
The trick here is to use an adjustment that derives an approximate effective “degrees 
of freedom” for use in the t-test. This is termed Welch’s t-test and is produced by 
default when performing analysis in some statistical programs (such as SPSS).  
 
 
 
  

 Two Sample t-test 
 
data:  bp by Diab 
t = -3.8869, df = 98, p-value = 0.0001847 
alternative hypothesis: true difference in 
means is not equal to 0 
95 percent confidence interval: 
 -23.123224  -7.492385 
sample estimates: 
mean in group 0 mean in group 1  
       113.3022        128.6100 
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One-way analysis of variance (ANOVA) 

 
The purpose of the one-way analysis of variance is to determine if there are any 
significant differences between the means of three or more groups. It is termed 
analysis of variance as the procedure compares two estimates of the population 
variance through an F-ratio.  

If the groups are sampled from the same population (i.e. the null hypothesis), then the 
F-ratio should be close to one. Conversely, if the groups are sampled from populations 
with different means, the F-ratio will be larger than 1.  
 
Worked example in R – testing for a difference in systolic blood pressure 
between socioeconomic status groups 
 

 

Stat’s corner 

 

You may recall from your introductory statistics classes that the process of ANOVA 
involves calculating several sources of variance in the form of sum of squares (SS). 
These include the Total SS, Regression (or Between) SS and Error SS. We know 
that the Error SS divided by the degrees of freedom (df) provides an estimate of 

the population variance (𝜎2), often termed the mean square error (MSE) 
 

𝑀𝑆𝐸 =  ∑ ∑(𝑌𝑖𝑗 − 𝑌�̅�)
2 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

∑(𝑛𝑖 − 1)

𝑘

𝑖−1

⁄  

 

Under the null hypothesis where all group population means are equal 𝜇1 = 𝜇2 =
⋯ = 𝜇𝑘 = 𝜇, the Regression SS divided by its df, the Mean Square Regression 

(MS(Reg)), also provides an unbiased estimate of 𝜎2 as follows 
 

𝑀𝑆(𝑅𝑒𝑔) = 𝑛 [∑(𝑌�̅� − �̅�)2

𝑘

𝑖=1

𝑘 − 1⁄ ] 
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MS(Reg) = 995.6, and MSE = 246.9. F ratio = 995.6/246.9 = 4.03. P-value = 0.021 i.e. 
significant effect – so a significant difference between, at least, two group means. 
 
Assumptions 
 

 The observations are independent 
 

 The errors are normally distributed → this is inferred by normality of the 
residuals. Alternatively, can be inferred by assessing normality within each 
group. 

 

 The variances of the data across the groups are equal (homogeneity of 
variances) 

 
What to do when assumptions are violated? 
 

 ANOVA can tolerate moderate departures from normality of errors. If a 
histogram of the residuals is clearly non-normal, apply a log transformation and 
see if this improves normality, or use a non-parametric test (e.g. Kruskal-Wallis 
test). 

 

 ANOVA is fairly robust against violations of equal variances in balanced 
designs → so preferably, try to have equal sample sizes for each group 

 

 If the design is unbalanced, and there is evidence to suggest heterogeneous 
variances, try a log transformation or use a non-parametric test that does not 
rely on distributional assumptions. 

 
Post-hoc testing following a significant omnibus test 
 
When ANOVA generates a statistically significant F-statistic, the convention is to follow 
the test by performing multiple pairwise comparisons through post-hoc testing to 
determine where the significant mean differences lie. Inflation of type I error (false 
positive) is a major concern when conducting multiple statistical tests and numerous 
adjustments to control type I error rates have been proposed → e.g. Bonferroni 
correction, Tukey’s HSD. There is no consensus on which test is the most appropriate 
to use and people are free to read the literature and decide on which test they feel is 
most suitable.  
 
In general, it is important to limit the number of comparisons made in an experiment 
and thought needs to be put into experimental design such that comparisons that are 
made are justifiable, and necessary to address study hypotheses. 

Analysis of Variance Table 
 
Response: bp 
               Df  Sum Sq Mean Sq F value  Pr(>F)   
as.factor(SES)  2  1991.2  995.62  4.0332 0.02077 * 
Residuals      97 23945.0  246.86 
 
Mean difference = 8.57 for average SES and 10.0 for 
disadvantaged SES 
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Simple linear regression 

 
The main objective of simple linear regression is to examine the relationship between 
an outcome (or dependent variable) and one predictor (or independent variable). The 
relationship is described by a mathematical model: 
 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 
 
Essentially, the observed value of the outcome for individual i (𝑌𝑖) is given by a linear 

combination of fixed-effects → the intercept (𝛽0) and the coefficient representing the 
effect of the independent predictor (𝛽1) – and the error term (𝜀𝑖). The relationship 
between the outcome and predictor variable is “linear” (i.e. a straight line) in simple 
linear regression.  
 
The parameters in the regression model are most commonly estimated using least 
squares, a method that minimises the sum of squared deviations from the fitted line 
(or fitted values) and observed values. 

The working model after estimation yields: 
 

�̂�𝑖 = 𝑏0 + 𝑏1𝑋𝑖 
 
Where Y-hat represents the fitted value. In a way analogous to ANOVA, we can 
partition the variance into the MS(Reg) and MSE, which are termed the MS(Model) 
and MS(Residual) in regression, as follows: 
 

𝑀𝑆(𝑀𝑜𝑑𝑒𝑙) = ∑(�̂�𝑖 − �̅�)2 

𝑛

𝑖=1

(# 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 (𝑝))⁄  

 

𝑀𝑆(𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙) = ∑(𝑌𝑖 − �̂�𝑖)
2 

𝑛

𝑖=1

(⁄ 𝑛 − 𝑝) 

 
 

Stat’s corner 

 

To estimate model parameters, firstly obtain an equation for the sum of squared 
deviations:  

𝑆𝑆𝑑𝑒𝑣 = ∑(𝑌𝑖 − 𝛽0 + 𝛽1𝑋𝑖)
2

𝑛

𝑖=1

 

 

Then differentiate with respect to 𝛽0 and 𝛽1 to obtain the least squares solutions, 

which, after a number of algebraic steps (particularly for 𝑏1) are: 

 

𝑏0 = �̅� − 𝑏1�̅�  𝑏1 =  
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑛

𝑖=1

∑ (𝑋𝑖−�̅�)2𝑛
𝑖=1
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Worked example in R – the relationship between systolic blood pressure and 
body mass index (BMI) 

 

 
 
 
 
 
 
 
 
The table (above) shows the estimated parameters. The intercept represents the 
expected (or estimated) systolic blood pressure at a BMI of 25 kg/m2 (the trick here is 
to centre the variable on 25 such that a BMI of 25 is represented by 0 in the regression 
analysis). The estimated coefficient for BMI_C (centred BMI) is ~2.5, and indicates 
that, for every 1-unit increase in BMI, systolic blood pressure increases, on average, 
by 2.5 mmHg.  
 
  

Regression coefficients 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 116.2446     1.2859  90.399  < 2e-16 *** 
BMI_C         2.4774     0.2924   8.472 2.47e-13 *** 
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Multiple linear regression – the general linear model 

 
In more complicated statistical analyses, sometimes our goal is to simultaneously 
estimate the effects of multiple predictors on a continuous outcome. A tool to achieve 
this is multiple linear regression, which is sometimes referred to as the general linear 
model. These models are simply an extension of simple linear regression by including 
additional predictors and take on the form: 
 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑝𝑋𝑝𝑖 + 𝜀𝑖 

 
A major advantage of multiple regression is that effects of predictor variables (also 
termed covariates) are estimated while adjusting for all other predictors in the model. 
The estimated coefficients end up being a form of weighted averages of strata-specific 
estimates; with strata groups representing the different combinations of covariates (i.e. 
different covariate patterns). This is often referred to as adjusting or controlling for 
covariates or confounding factors.  
 
Estimation of coefficients (parameters) in a multiple regression model is also achieved 
via least squares, and is derived using matrix calculations and the differentiation of a 
function of a vector quantity (a little more complex than simple linear regression!).  
 
Worked example in R – the relationship between systolic blood pressure and 
diabetes status, SES and body mass index (BMI) 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Interpretation: The intercept is 110.52, which provides an estimate of mean systolic 
blood pressure when all covariates are set to reference levels (i.e. non-diabetic, 
advantaged SES, and a BMI of 25, remembering that BMI was centred to 25 and 
therefore 25 is the reference level). (Diab)1, (SES)1 and (SES)2 provide estimates of 
the mean difference in systolic blood pressure for diabetes, and average and 
disadvantaged SES, respectively. BMI_C is the estimated change in systolic blood 
pressure for every 1 unit change in BMI. How do these estimates compare to the 
estimates calculated using the individual (univariate) statistical methods above? → 
they are somewhat similar and change slightly due to adjustment for each other in the 
one model. 
 

Analysis of Variance Table 
 
Response: bp 
                Df  Sum Sq Mean Sq F value    Pr(>F)     
as.factor(Diab)  1  3749.3  3749.3 34.2885 6.781e-08 *** 
as.factor(SES)   2  1985.2   992.6  9.0778 0.0002468 *** 
BMI_C            1  9814.0  9814.0 89.7531 2.202e-15 *** 
Residuals       95 10387.7   109.3   
 

Regression coefficients 
 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)      110.5242     1.8201  60.724  < 2e-16 *** 
as.factor(Diab)1  13.9699     2.6223   5.327 6.68e-07 *** 
as.factor(SES)1    9.2862     2.4872   3.734 0.000322 *** 
as.factor(SES)2   13.5721     2.6322   5.156 1.37e-06 *** 
BMI_C              2.2762     0.2403   9.474 2.20e-15 *** 
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Categorical data analysis 
 
Comparison of two or more proportions or categorical variables 

 
A very common way of measuring outcomes is as counts of categorical variables or 
proportions derived from count data. Categorical data can be analysed as proportions 
(using a Z-test based on the normal approximation of the binomial distribution) or as 
the raw values themselves (the actual observed counts).  
 
Analysis of observed counts can be achieved using the Chi-square test of 
independence. The Chi-square test is a non-parametric test, in that it does not rely 
on the shape or form of the underlying distribution from which the data was derived. It 
also has the flexibility to include numerous levels within each of the categorical 
variables being compared (i.e. can handle larger than 2×2 tables). The test statistic for 
the Chi-square test of independence is: 
 

𝜒2 =  ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
⁄  

 
Where 
 

𝐸𝑖 =
𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 × 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

 

The 𝜒2 test statistic approximately (or asymptotically) follows a chi-square distribution 

(𝜒𝛼
2) with (𝑟 − 1)(𝑐 − 1) degrees of freedom where 𝑟 = the number of rows and 𝑐 = is 

the number of columns in the contingency table. 
 
For example, let’s explore diabetes status by socioeconomic status with the data as 
follows: 
 
Observed counts 

 Advantaged Average Disadvantaged Total 

Diabetic 7 8 5 20 

Non diabetic 29 27 24 80 

Total 36 35 29 100 

 
Expected counts 

 Advantaged Average Disadvantaged Total 

Diabetic 7.2 7 5.8 20 

Non diabetic 28.8 28 23.2 80 

Total 36 35 29 100 

 

𝜒2 = 0.32345;      𝑑𝑓 = (2 − 1)(3 − 1) = 2 
 

Right tail probability of a 𝜒2 = 0.32345 at 2 degrees of freedom = 0.8507 (this is the p-
value) 
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Worked example in R – the relationship between SES and diabetes status 
 
 
 
 
 
 
 
 
 
 
 
When the sample size is small, say when at least one of the observed counts in the 
cells of a contingency table is less than 10, it’s often useful to apply Fisher’s exact 
test instead of the chi-square test, as the chi-square approximation tends to be poor. 
Fisher’s exact test was originally devised for 2×2 tables, but, with modern computing 
power, can now handle larger tables (although, the calculation is likely to be based on 
some sort of approximation so the test is no longer exact!).  
 
Applying Fisher’s exact test for the diabetes and SES example (above) generates: 
 
 
 
 
 
 
Comparison of two proportions using the Z-test 
 
When the sample size and/or proportion are large enough (again, around a cell size 
of 10 or more in a 2×2 contingency table), it’s possible to use the normal approximation 
of the binomial distribution to compare two proportions. The test statistic is as follows: 
 

𝑍 =
𝑝1 − 𝑝2

√�̂�(1 − �̂�) (
1

𝑛1
+

1
𝑛2

)

 

 
Where  
 

�̂� =
𝑦1 + 𝑦2

𝑛1 + 𝑛2
 

 

This test statistic squared (𝑍2) is, in fact, mathematically equivalent to the 2×2 table 
chi-square statistic. The Z-statistic is used to compute a p-value, allowing statistical 
significance to be assessed. Furthermore, 95% CIs can be constructed providing an 
interval for the likely true value of the population difference in proportions.  
 
 
 
 
 

(R) Table of frequencies 
 
               SES 
Diabetes Advantaged Average Disadvantaged 
   No          29      27            24 
   Yes          7       8             5 
 

Pearson's Chi-squared test 
 
data:  M 
X-squared = 0.32345, df = 2, p-value = 0.8507 

Fisher's Exact Test for Count Data 
 
data:  M 
p-value = 0.9052 
alternative hypothesis: two.sided 
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Z-test in R – diabetes by overweight status 
 
Using a Z-test to compare the prevalence of diabetes in normal and overweight 
individuals 
 
Data table 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Binary logistic regression 

 
Binary logistic regression belongs to the family of Generalized Linear Models. For 
these models, the broad structure of multiple linear regression (the general linear 
model; described above) is extended to handle other types of outcomes (e.g. binary, 
counts, rates). The main requirement is that the outcomes have distributions that 
belong to the exponential family (e.g. binomial, Poisson and normal distributions). In 
the case of binary logistic regression, the outcomes are based on the binomial 
distribution, and is useful for analysing data where the study outcome is binary in 
nature (e.g. male versus female; “Yes” versus “No”; present versus absent).  
 
Logistic regression has the general form: 
 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽1𝑖𝑋1𝑖 + ⋯ + 𝛽𝑝𝑖𝑋𝑝𝑖 

 
Where 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = ln (
𝜋𝑖

1 − 𝜋𝑖
) 

 
And the binomial (discrete) probability distribution is: 
 

𝑃(𝑥|𝑝, 𝑛) = (
𝑛

𝑥
) 𝑝𝑥(1 − 𝑝)(𝑛−𝑥) 

 
Therefore, the technique models a function of the probability of the event, and not the 
actual probability of the event. However, the logit can be back transformed to yield 
predicted probabilities. Logistic regression is useful for assessing the effects of 
multiple predictor variables, including continuous and categorical explanatory 
variables, on the likelihood (or probability) of a binary outcome. Maximum likelihood is 

used to estimate the model parameters (the 𝛽 coefficients) and, when exponentiated, 

Data 
 
            Diabetes 
Weight       Yes No |  Pr 
  Normal      15 75 | 0.167 
  Overweight  25 50 | 0.333 
 

2-sample test for equality of proportions 
without continuity correction 

 
data:  N 
X-squared = 6.1875, df = 1, p-value = 0.01287 
alternative hypothesis: two.sided 
95 percent confidence interval: 
 -0.29823519 -0.03509814 
sample estimates: 
   prop 1    prop 2  
0.1666667 0.3333333 
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represent the estimated effects of individual predictor variables on the outcome in the 
form of odds ratios (ORs). 
 
Worked example in R – effects of BMI and SES on the prevalence of diabetes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exponentiation of the regression coefficients yields the odds ratios, which describes 
the nature (positive or negative) and strength of the association between the predictor 
variables and the outcome. In the example above, the regression coefficients for 
average SES, disadvantaged SES and BMI (a 1-unit increase) were 0.57, 0.63 and 
0.09, respectively, which convert to odds ratios of 1.76, 1.88 and 1.09, respectively. 
Odds ratios are interpreted as the factor by which the odds of the outcome are 
changed (relative to the reference level) in the presence of the covariate. For example, 
in the illustration above, the odds of diabetes are 1.76 times greater in those with 
average SES compared to those with advantaged SES.  
 
A note on diagnostics – “Goodness of fit” 
 
When fitting binary logistic regression models (or any model for that matter), it’s 
important to assess how well the specified model explains or fits the data. For binary 
logistic regression, there are a variety of goodness of fit statistics. These include the 
Deviance and Pearson Chi-squared statistics, and the Hosmer-Lemeshow statistic. 
Deviance and Pearson Chi-squared statistics are asymptotically equivalent, but may 
differ slight when the sample size is small. If the model is specified correctly, both 

statistics are approximately chi-square (𝜒2) distributed with N-p (sample size minus 
number of model parameters) degrees of freedom. The Hosmer-Lemeshow test is also 
commonly used, and works by dividing the data into groups, commonly deciles of 
predicted probabilities (or some other suitable number of groups), and performing a 
chi-square test on the observed and predicted values of the outcome across the 
groups. While these diagnostic goodness of fit statistics may be of some use, they are 
often underpowered, and it may be preferable to test model fit by thoroughly exploring 
the functional forms of the relationships between explanatory variables and the 
outcome (e.g. linear, non-linear, ordinal), and evaluating the addition of appropriate 
terms (covariates) in models.  
 
  

Logistic regression coefficients 
 
 Coefficients: 
                   Estimate Std. Error z value Pr(>|z|)     
(Intercept)        -2.00418    0.27352  -7.327 2.35e-13 *** 
SES_FAverage        0.56635    0.34777   1.629  0.10341     
SES_FDisadvantaged  0.63331    0.34595   1.831  0.06715 .   
BMI_C               0.09063    0.02847   3.183  0.00146 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 374.07  on 399  degrees of freedom 
Residual deviance: 359.94  on 396  degrees of freedom 
AIC: 367.94 
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Multinomial logistic regression 

 
The concept of binary logistic regression can be extended to cater for more than 2 
outcomes. This analysis is termed multinomial logistic regression, and is based on 
the multinomial probability distribution, which gives the probability of observing y1, 
y2…& yj outcomes (responses) from n independent observations of Y (this essentially 
means that the variable Y can take on J different outcomes, with y1 to yj denoting the 
numbers of times we observe each of the different outcomes when we sample Y n 
times).  
 
The multinomial probability distribution is: 
 

𝑓(𝒚|𝑛) =
𝑛!

𝑦1! 𝑦2! … 𝑦𝑗!
𝜋1

𝑦1𝜋2
𝑦2 … 𝜋

𝑗

𝑦𝑗
 

 
There are two main categories of multinomial logistic regression: nominal and 
ordinal. In nominal multinomial logistic regression, it is assumed that there is no 
defined or natural order of the responses, and the analysis simply works by selecting 
a reference category for which the odds of all other categories can be generated (e.g. 
odds of outcome 2 relative to reference, say outcome 1; odds of outcome 3 relative to 
outcome 1, … odds of outcome j relative to outcome 1). On the other hand, when there 
is a natural order to the responses, ordinal multinomial logistic regression can be used. 
This method comes in a variety of forms (e.g. cumulative logit model, proportional odds 
model) depending on how we chose to order the responses. Tip: if you think your data 
would be best analysed using multinomial logistic regression, consult a statistician as 
the method is fairly sophisticated, and typically outside the comfort zone of most non-
statisticians. 
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Poisson regression 

 
When the outcome being assessed can be best captured in the form of count data, 
Poisson regression can be used to analyse the relationship between a set of 
predictor variables and the outcome. In this analysis, the underlying probability 
distribution for the count data, Y, is assumed to be the Poisson distribution which is 
written as: 
 

𝑓(𝑦) =  
𝜆𝑦𝑒−𝜆

𝑦!
 

 

For this distribution, the expected value (or mean), 𝐸(𝑌), is 𝜆, and the variance, 
𝑉𝑎𝑟(𝑌), is also 𝜆. Therefore, this distribution has the property that as the mean 
increases, so does the variance.  
 
Examples of outcomes that may be assumed to be Poisson distributed, and therefore 
would lend themselves nicely to Poisson regression analysis, include the number 
cancer cases by suburb, number of smoking related deaths by profession, and number 
of accidents at particular intersection by season (e.g. by spring, summer, autumn and 
winter). These outcomes are all counts. However, a natural question that arises when 
analysing count data is how do we account for the different populations at risk or size 
of exposure? For example, there might be more cancer cases in a particular area 
simply because there are more people living in the area (i.e. a greater exposure or 
larger population at risk). The way to account for varying levels of exposure is to 
express the magnitude of the outcome relative to the population at risk. For example, 
the rate per 100,000 persons, or rate per 1,000 years at risk. A major advantage of 
Poisson regression is that it is able to account for different populations at risk (by 
including a variable called the offset), effectively becoming a tool that can model rates. 
 
Therefore, a useful application of Poisson regression is for the modelling of rates of 
outcomes/events. For example, Poisson regression might be used to model the rates 
of hip fractures by socioeconomic status and geography in New South Wales. Like 
logistic regression, Poisson regression is able to assess the effects of multiple 
predictor variables, including continuous and categorical explanatory variables, on 
count outcomes. Maximum likelihood is used to estimate the model parameters (the β 
coefficients) and, when exponentiated, represent the estimated effects of individual 
predictor variables on the outcome in the form of risk ratios or rate ratios. 
 
Worked example in R – comparing the number of hip fractures by SES and 
whether you live in the north or south of New South Wales 
 
Table: Mean number and rate per 100,000 of hip fractures by SES & north/south 
geography 

 SES Geography Mean Rate/100,000 

1 Advantaged North 475.3 512.4 

2 Advantaged South 725.0 704.9 

3 Average North 656.3 655.0 

4 Average South 860.3 914.6 

5 Disadvantaged North 937.4 893.5 

6 Disadvantaged South 1195.2 1244.5 
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Exponentiation of the coefficients in Poisson regression yields the relative risk or rate 
ratio, which is a measure of the strength of the association between the predictive 
factors and the outcome. The relative risk or the rate ratio represents the factor by 
which the magnitude of the outcome is changed when the covariate is present. So, for 

the example data (above), the mean number of fractures is, on average, e0.236809 = 1.27 
and e0.576647 = 1.78 times greater in those with average and disadvantaged SES, 
respectively, relative to those with advantaged SES. For south geography, the mean 
number of fractures is 1.33 times greater than those living in northern areas (lack of 
sunlight?). 
 
To take into account different population sizes, natural log transformed population is 
included in the Poisson model (as the offset variable). In this version of Poisson 
regression, the outcome being modelled is actually the rate per unit population (i.e. 
per person).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The regression coefficients above, where natural log population is included in the 
model as the offset, are similar to the non-offset model, with the exception of the 
intercept. The intercept relates to the magnitude of the outcome being modelled (which 
is the rate per person in this case and thus is a much smaller value than the actual 
mean number of fractures). Similarity of coefficients between offset and non-offset 
models suggests that the population structures are fairly similar between the strata 
groups defined by the levels of the predictor variables.  
 
  

Poisson regression – without offset or dispersion parameter 
 
Coefficients: 
                   Estimate Std. Error z value Pr(>|z|)     
(Intercept)        6.241041   0.008789  710.08   <2e-16 *** 
SES_FAverage       0.236809   0.009955   23.79   <2e-16 *** 
SES_FDisadvantaged 0.576647   0.009354   61.64   <2e-16 *** 
Geog_FSouth        0.286860   0.007017   40.88   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 7887.0  on 99  degrees of freedom 
Residual deviance: 1600.7  on 96  degrees of freedom 
AIC: 2459.5 

Poisson regression – with offset but no dispersion parameter 
 
Coefficients: 
                    Estimate Std. Error z value Pr(>|z|)     
(Intercept)        -5.281006   0.008902 -593.22   <2e-16 *** 
SES_FAverage        0.253616   0.009961   25.46   <2e-16 *** 
SES_FDisadvantaged  0.563971   0.009352   60.30   <2e-16 *** 
Geog_FSouth         0.330565   0.007017   47.11   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 6456.846  on 99  degrees of freedom 
Residual deviance:   99.151  on 96  degrees of freedom 
AIC: 957.92 
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Overdispersion 
 
As mentioned above, both the expected value and variance of the Poisson distribution 
is 𝜆. This is a problem in cases where 𝐸(𝑌) < 𝑉𝑎𝑟(𝑌), so where the variance of a 

random variable, 𝑌, is actually larger than the mean. This is termed overdispersion. 
Two common approaches are used to handle overdispersion. The first one is to fit an 

additional parameter, the dispersion parameter (𝜙),  during estimation, which inflates 

that variance (i.e. 𝑉𝑎𝑟(𝑌) = 𝜙𝜆). The second option is to use another type of 
regression termed negative binomial regression, which has greater flexibility in the 
way the variance is handled. A common approach to check for overdispersion is to 
construct a ratio of the residual deviance to the residual degrees of freedom. 
Theoretically, they should be equal in a good fitting model (i.e. ratio = 1). However, 
ratios larger than 1 may reflect overdispersion (or could, in fact, reflect a poorly fitted 
model missing important predictor variables). If you think your data may be 
overdispersed, it’s probably best to make an appointment with a statistician. Below is 
an example of the Poisson regression model fit to the example hip fracture data 
including both an offset variable and the dispersion parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Poisson regression – with offset and dispersion parameter 
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)        -5.281006   0.009049 -583.57   <2e-16 *** 
SES_FAverage        0.253616   0.010126   25.05   <2e-16 *** 
SES_FDisadvantaged  0.563971   0.009507   59.32   <2e-16 *** 
Geog_FSouth         0.330565   0.007133   46.34   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for quasipoisson family taken to be 1.033335) 
 
    Null deviance: 6456.846  on 99  degrees of freedom 
Residual deviance:   99.151  on 96  degrees of freedom 
AIC: NA 
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Longitudinal and correlated data 
 
The statistical methods we have covered so far have assumed statistical 
independence between observations or data points. However, it is fairly common to 
encounter situations where this is not the case, and statistical independence cannot 
reasonably be assumed. A paired design is a good example of this, where, in its 
simplest form, a pair of observations is taken from the same individual at two points 
in time with different exposures at each time point. If we term each pair of observations 
from the same individual as a cluster, this is an example where the covariate, or study 
variable of interest, is distributed within clusters. Such data can be analysed using a 
paired samples t-test, if the differences between the two measures (for each 
individual) follows a normal distribution.  
 
Effects on covariates distributed within and between clusters 
 
Taking into consideration the correlation among observations can be very powerful 
when covariates are distributed within clusters (i.e. the different levels of the covariate 
occur within clusters). For example, a study where the same subject receives the 
control treatment at one point in time and then the intervention at another point in time 
is a design where the covariate (treatment in this case) is distributed within clusters. 
Accounting for the correlation allows more of the variance to be explained, effectively 
splitting the error variation into the systematic difference between individuals and the 
remaining residual variation. Therefore, when the correlated data structure is taken 
into account, the variance (or standard errors) of the estimated effects associated with 
covariates distributed within clusters decrease, and effects are more precisely 
estimated. 
 
In the case that all individuals within clusters are given the same treatment/exposure, 
but treatment/exposure is allowed to vary between clusters, the covariates are 
distributed between clusters (i.e. levels of the covariates are fixed within clusters but 
differ between clusters). In these situations, taking into account the correlated data 
structure (appropriately) increases the standard errors of estimated effects (compared 
to an analysis not accounting for the correlation) as the correlation within clusters 
effectively decreases the amount of independent information (e.g. think about the 
similarity between identical twins – i.e. highly correlated – and consider how 
independent their height measurements would be).  
 
There are a number of study designs and data structures which involve some level of 
correlation among observations. Accordingly, there are a number of different 
statistical methods to analyse such data. These include: 
 

 Paired t-tests 

 Summary measures approach for longitudinal data → area under the curve; 
maximum value; growth rate or linear regression coefficient 

 Generalised estimating equations (GEE) → accounting for correlation in estimated 
effects (parameters) and standard errors 

 Normal (linear) mixed (multilevel) models 

 GEE and generalised linear mixed models (GLMM) for discrete data → binary and 
count data 
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With the exception of paired t-tests and the summary measures approach, these 
statistical techniques are generally beyond the scope of non-statisticians, and I would 
recommend seeking the assistance of a statistician should you wish to undertake any 
of these analyses. 
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Kaplan-Meier survival analysis 

 
Survival analysis seeks to study responses in the form of “time to failure” (e.g. time to 
death, onset of disease, or relapse) according to study covariates. An important 
aspect of survival analysis is that it deals with censoring, which is a mechanism 
whereby the outcome for an individual is missing. The most commonly encountered 
and handled form of censoring is right censoring, which is the situation where a 
subject is followed for a certain period of time before either leaving the study or the 
study ending, at which point we do not know if and when the event of interest occurs. 
 
A common method for analysing survival curves, and differences between them, is 
Kaplan-Meier survival analysis. Using this method, we can obtain survival estimates 
at each time point where at least one observation fails.  
 
The Kaplan-Meier estimator is: 
 

𝑆 ̂(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)

𝑖:𝑡𝑖≤𝑡

 

 

Where 𝑑𝑖 and 𝑛𝑖 are the number of deaths and number of individuals at risk at time 𝑖. 
 
Graphing survival estimates 
 
Kaplan-Meier estimates are often plotted to produce graphical displays of 
survivorship.  
 
Example: % survival by time (days) following cancer diagnosis  
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Two (or more) Kaplan-Meier survival curves can be assessed by plotting curves on a 
single graph 
 
Example: % survival by time (days) following cancer diagnosis by treatment 

 
 
The most common summary measure of survival data based on Kaplan-Meier 
survival curves is median survival, but sometimes quartiles (25th and 75th percentiles) 
of survival time are used. 
 
Table: 25th, median (50th) and 75th percentile survival time estimates following 
cancer diagnosis, and lower and upper 95% confidence limits (in days) 

  Quantile Estimate Lower Upper 

1 25 25 19 36 

2 50 80 52 105 

3 75 162 133 242 

 

Statistical test for comparing survival curves – the log-rank test 
 
Often, it is useful to assess whether survivorship between two groups is statistically 
different. There are several methods to do this, but a common way, that usually 
accompanies Kaplan-Meier graphical displays of survivorship, is the log-rank test. 
The test is classified as non-parametric, and compares estimates of hazard functions 
between groups at each time an event is observed. The test compares the observed 
number of events in each group to the expected number of events based on the two 
groups having equal survival and hazard functions (i.e. equal rates of death in each 
group).  
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The log-rank statistic is calculated as: 
 

𝑍 =  
∑ (𝑂1𝑗 −𝐽

𝑗=1 𝐸1𝑗)

√∑ 𝑉𝑗
𝐽
𝑗=1

  

 
Where 
 

𝐸1𝑗 =
𝑂𝑗

𝐸𝑗
𝑁1𝑗 

 

𝑉𝑗 =
𝑂𝑗(𝑁1𝑗 𝑁𝑗⁄ )(1 − 𝑁1𝑗 𝑁𝑗⁄ )(𝑁𝑗 − 𝑂𝑗)

𝑁𝑗 − 1
 

 
𝑂𝑗 = total number of events across both groups at period 𝑗 

𝑁𝑗 = total number of individuals “at risk” (across both groups) at the start of period 𝑗 

𝑂𝑗1 and 𝑂𝑗2 are the number of observed events in each group, respectively, at 𝑗 

𝑁𝑗1 and 𝑁𝑗2 are the number “at risk” in each group, respectively, at 𝑗 

𝐸1𝑗 and 𝐸2𝑗 are the expected number of events in each group, respectively, at 𝑗 

𝑉𝑗 is the variance at period 𝑗 

 
Worked example in R – assessing equality of survival curves following cancer 
diagnosis by treatment 
  
Table: Median survival time estimates (in days) with lower (LL) and upper (UL) 95% 
confidence interval limits following cancer diagnosis by treatment 

  Treatment Est. LL UL 

1 trt=1 103.0 59 132 

2 trt=2 52.5 44 95 

 
Note the wide confidence intervals associated with each estimate of median survival 
time (low precision).  
 
 
 
 

 Kaplan Meier Survival and log-rank test 

 Cox proportional hazards regression 
 
Although there was a sizeable difference in median survival times between the two 
treatment groups, the confidence intervals associated with each estimate were large, 
indicating considerable variance (low precision), and, overall, the survival distributions 
were not significantly different according to the log-rank test. 
 
  

Log-rank test for comparing survival curves 
 
       N Observed Expected (O-E)^2/E (O-E)^2/V 
trt=1 69       64     64.5   0.00388   0.00823 
trt=2 68       64     63.5   0.00394   0.00823 
 
 Chisq= 0  on 1 degrees of freedom, p = 0.928 
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Cox proportional hazards regression survival analysis 

 
There are a variety of more sophisticated ways of analysing survival data, particularly 
those which take into account the effect of covariates on survival times. A common 
technique used for analysing survival data that caters for the individual effects of 
covariates is Cox proportional hazards regression. In this method, the regression 
is not on survival times, but is specified to model the hazard function as follows: 
 

ℎ(𝑡) = ℎ0(𝑡) × exp (𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝) 

 
Where 
 

ℎ(𝑡) = the hazard 
ℎ0(𝑡) = baseline hazard 

exp (𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝) = the model coefficients and subject-specific covariate values 

that modify the baseline hazard 
 
Therefore, the hazard (instantaneous rate of failure) of one subject is a multiple of the 
hazard of another subject at any point in time (this does not mean the hazard is fixed 
over time, it certainly can vary).  
 
Cox proportional hazards models are constructed in a way to conveniently convey the 
effects of covariates (e.g. age, sex, treatment …) on survival in the form of hazard 

ratios. Exponentiation of estimated model parameters (the 𝛽 coefficients) yields the 
hazard ratios for the covariates associated with the estimated parameters. For 
example, if the estimated parameter for a frailty covariate in a Cox regression model 

is 1.5, the hazard ratio is 𝑒1.5 = 4.48, which indicates that a subject that is frail (by 
whatever definition) is 4.48 times more likely to experience the event at any given time 
compared to someone that is not frail. 
 
Worked example in R – melanoma survival time by sex, tumour thickness, age 
and site 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cox proportional hazards regression estimated coefficients and hazard 
ratios 

 
           coef      exp(coef) se(coef)  z       Pr(>|z|)   
tt         0.115053  1.121933  0.044714  2.573   0.0101 * 
sexFemale -0.522949  0.592770  0.277846 -1.882   0.0598 . 
siteFace  -0.112545  0.893557  0.409518 -0.275   0.7835   
siteNeck   0.203789  1.226039  0.426887  0.477   0.6331   
siteScalp  0.290931  1.337672  0.388658  0.749   0.4541   
age        0.007047  1.007072  0.007839  0.899   0.3687   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Hazard ratios 
 
             exp(coef) exp(-coef) lower .95  upper .95 
tt           1.1219     0.8913    1.0278     1.225 
sexFemale    0.5928     1.6870    0.3439     1.022 
siteFace     0.8936     1.1191    0.4004     1.994 
siteNeck     1.2260     0.8156    0.5311     2.831 
siteScalp    1.3377     0.7476    0.6245     2.865 
age          1.0071     0.9930    0.9917     1.023 
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Only one covariate, tumour thickness (tt) is significant at a 95% confidence level with 
a hazard ratio of 1.12. The interpretation of this estimate is that, for every 1 mm 
increase in tumour thickness, the rate of death increases by a factor 1.12. 
 

 
 
 
 
 
 
 
 
 
 


